
WP-2023-005

 The Effects of Population Growth on Patents and Economic Growth
Dynamics

Rudra Narayan Kushwaha and Taniya Ghosh

Indira Gandhi Institute of Development Research, Mumbai
May 2023



The Effects of Population Growth on Patents and Economic Growth
Dynamics

Rudra Narayan Kushwaha and Taniya Ghosh

Email(corresponding author): taniya@igidr.ac.in

Abstract
The paper analyzes how patent-economic growth relationship changes as population dynamics change.

The literature on this relationship has not focused on the role of population growth rate, despite data

showing that countries’ population growth trends have recently shifted from positive to declining and

even negative. We obtain three main results: First, we derive unique growth maximizing patent

protection policies for different population growth scenarios. When the population growth rate is above

(exactly at) the critical value, the growth-maximizing patent breadth is incomplete (complete), with

finite (infinite) patent length. However, when the population growth rate is negative and below the

critical value, then growth-maximizing patent breadth can extend beyond complete. Second, our model

validates Jones (2022)’s Empty Planet result, as the unique growth-maximizing patent protection policy

exists, and thus the steady state per capita output growth exists even with a negative population growth

rate. Third, our model predicts that a country with a lower rate of population growth should have a

more stringent growth-maximizing patent protection policies than others. The findings suggest that

while formulating growth-maximizing patent protection policies, countries should consider shifting

population dynamics.

Keywords: Economic Growth, Overlapping Generations Model, Patents, Physical Capital,
Population, Variety Expansion Model

JEL Code: O31, O34, O40



The Effects of Population Growth on Patents and

Economic Growth Dynamics

Rudra Narayan Kushwaha1 and Taniya Ghosh (Corresponding Author)2

1Indira Gandhi Institute of Development Research (IGIDR), Gen. A. K. Vaidya Marg,
Filmcity Road, Mumbai, 400065, India , Email: rudra@igidr.ac.in

2Indira Gandhi Institute of Development Research (IGIDR), Gen. A. K. Vaidya Marg,
Filmcity Road, Mumbai, 400065, India , Email: taniya@igidr.ac.in , Phone:

91-22-28426536 , ORCID ID: https://orcid.org/0000-0002-9792-0967

Abstract

The paper analyzes how patent-economic growth relationship changes as population
dynamics change. The literature on this relationship has not focused on the role of pop-
ulation growth rate, despite data showing that countries’ population growth trends have
recently shifted from positive to declining and even negative. We obtain three main re-
sults: First, we derive unique growth maximizing patent protection policies for different
population growth scenarios. When the population growth rate is above (exactly at) the
critical value, the growth-maximizing patent breadth is incomplete (complete), with fi-
nite (infinite) patent length. However, when the population growth rate is negative and
below the critical value, then growth-maximizing patent breadth can extend beyond com-
plete. Second, our model validates Jones (2022)’s Empty Planet result, as the unique
growth-maximizing patent protection policy exists, and thus the steady state per capita
output growth exists even with a negative population growth rate. Third, our model pre-
dicts that a country with a lower rate of population growth should have a more stringent
growth-maximizing patent protection policies than others. The findings suggest that while
formulating growth-maximizing patent protection policies, countries should consider shift-
ing population dynamics.
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1 Introduction

Several countries have taken positive steps in recent decades to tighten their patent pro-
tection policies. The global agreement on trade-related aspects of intellectual property
rights (TRIPS), which came into force in 1995; has influenced countries’ adoption of such
tighter patent protection policies. For example, Park (2008)1 shows that the strength of In-
dia’s patent protection policies has increased from 1.23 in 1995 to 3.76 in 2005. However,
recent studies suggests that the relationship between the economy’s strength of patent

1 Park (2008) provides an update to the index of patent protection policies (on a 0-5 scale, with a higher value
indicating stronger protection) of Ginarte and Park (1997). The index is the unweighted sum of five categories
of patent protection (extent of coverage, membership in international treaties, duration of patent protection,
enforcement mechanism, and restriction on patent protection.) that have been assigned a score ranging from 0
to 1.
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protection policies and the rate of economic growth is ambiguous.2 For instance, Falvey
et al. (2006) found that the relationship between the economy’s patent policy tightness
and growth rate is dependent on its level of development. It is positive and significant for
high- and low-income countries, but not for middle-income countries. Further, Iwaisako
and Futagami (2013) obtained a non-monotone relationship between the economy’s tight-
ness of patent protection policy and growth rate in an endogenous growth model.

We investigate why countries have continued to tighten patent protection policies de-
spite theoretical and empirical findings indicating that doing so may not be a panacea
for economic growth. Does the rate of population growth play a role in this? Therefore,
the study adds to the existing literature by looking into how growth-maximizing patent
policies interact with changing population growth rate dynamics. This is especially im-
portant at a time when most countries are experiencing declining population trends (see
Figure 1), with some, such as Japan, Germany, Italy, and Spain already experiencing neg-
ative population growth.3 As a result, the implications of changing population dynamics,
specifically the declining population growth trend, on the patent-growth nexus must be
investigated. Furthermore, we allow for a negative population growth rate and investigate
its impact on growth-maximizing patent protection policies and, consequently its impact
on optimal per capita output growth. There are growth models that allow for negative
population growth rates; see Sasaki and Hoshida (2017), Jones (2022), and Bucci (2023),
but they do not examine the effects of patent policies on economic growth given the neg-
ative population growth rates. Moreover, Jones (2022) discovered that economic growth
stagnates even when population growth is negative, a phenomenon known as the Empty
Planet. We also investigate whether this result holds true for our model.

We employ a variety expansion growth model in a finite horizon overlapping gener-
ations (OLG) economy with physical capital and lab-equipment type R&D specification
as in Rivera-Batiz and Romer (1991). Most studies on patent protection policies and
economic growth have focused on economies of infinitely lived households.4 However, the
infinite horizon model, by design, implies positive population growth rate and is not en-
tirely consistent with declining population growth trend or negative population growth
rate. In short, a finite horizon model, such as an OLG model, can capture the effects
of a declining population growth rate or a negative population growth rate more accu-
rately. Furthermore, because the literature on endogenous growth has emphasized the
role of R&D in economic growth and the role of patents in incentivizing these R&Ds,
the endogenous growth model is a natural framework for capturing the impact of patent
policies on growth. Therefore, following Diwakar et al. (2021), we employ a variety expan-
sion endogenous growth model in a finite horizon OLG economy to analyze the effects of
patent protection policies on growth.5 Moreover, the government regulates patent protec-

2 See Gould and Gruben (1996), Thompson and Rushing (1999), Falvey et al. (2006), Qian (2007), Lerner (2009),
and for theoretical studies; see O’donoghue and Zweimüller (2004), Furukawa (2007), Horii and Iwaisako (2007),
Chu et al. (2012a), Chu et al. (2012b), Iwaisako and Futagami (2013), and Nakabo and Tabata (2018).

3 Jones (2022) using United Nations 2019 data showed that the natural population growth rates (births minus
deaths rate, ignoring immigration) in Japan, Germany, Italy, and Spain are already negative.

4 Iwaisako and Futagami (2003), Kwan and Lai (2003), O’donoghue and Zweimüller (2004),Furukawa (2007),
Horii and Iwaisako (2007), Chu et al. (2012a), Chu et al. (2012b), Cysne and Turchick (2012), Iwaisako and
Futagami (2013), and Zeng et al. (2014).

5 Chou and Shy (1993), Sorek (2011), and Diwakar et al. (2021) are the only studies that analyze the growth im-
plications of patent protection policies in a discrete-time OLG economy with finitely living households, whereas
Nakabo and Tabata (2018) analyzes it in a continuous-time OLG economy of perpetual youth households.
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tion through several patent policy instruments, the most well-known of which are patent
length and patent breadth in growth theory. The patent breadth limits the ability of the
patent owner to charge an unconstrained monopolist’s price, whereas the patent length is
the duration for which a patent is valid. In this paper, we examine both cases. Although
our study is closely related to Diwakar et al. (2021), it differs in at least two ways. Our
main focus is to analyze what happens to growth-maximizing patent protection policies
when, first, the population growth rate of an economy changes, and second, when the
population growth rate becomes negative.

Using Samuelson (1958) and Diamond (1965) two-period OLG economy in a variety
expansion growth model, Chou and Shy (1993) showed that a one-period patent length
maximizes growth more than an infinite patent length, as all savings are translated into
R&D investments each period, and no-one crowds out investment for buying old patents.
Sorek (2011) employs a two-period OLG economy in a quality-ladder growth model to
determine the parameter conditions under which one-period patent length maximizes
growth. However, Diwakar et al. (2021) found that growth-maximizing patent length is
finite but greater than one-period patent length. Furthermore, they discovered that, for
any positive capital depreciation rate, the growth-maximizing patent breadth protection
tightens with an increase in effective labor supply. We may deduce from this that, un-
der certain special assumptions, growth maximizing patent breadth protection tightens
with population.6 Does this also imply that, growth-maximizing patent protection policies
tighten with population growth rates? However, this is not supported by data because
most countries, on the one hand, have a declining population growth rate (See Figure 1)7

and, on the other hand, are tightening their patent protection policies. For example, while
India’s population growth rate fell from 2.05 in 1995 to 1.73 in 2005, the strength of its
patent protection policies rose from 1.23 in 1995 to 3.76 in 2005.

Fig. 1: The trend of the population growth rate for various regions since 1965.
Source: The World Bank

To the best of our knowledge, this is the first study that analyzes how growth-
maximizing patent protection policies are related to population growth rates. A change in
the rate of population growth can alter the economy’s number of R&D innovators, aggre-

6 Note that if A = 1 in Proposition 4 of Diwakar et al. (2021), effective labor supply becomes equal to labor
supply or population in the model.

7 Moreover, Jones (2022) showed that fertility rates of high-income countries as a whole, as well as India, China
and the US, have been below the replacement rates.
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gate demand, and interest rates. Therefore, existing patent protection policies may need
to be revised in order to make it growth-maximizing. In addition, we will also examine
how growth-maximizing patent protection policies are related to other parameters such
as capital depreciation rate, per capita R&D cost, and capital or machine share.

In this study, we first analyze (a) the growth implications of patent breadth under the
assumption of infinite patent length. Following that, we investigate (b) the growth implica-
tions of patent length under the assumption of complete patent breadth. We obtain unique
growth-maximizing patent breadth and length for a fixed population growth rate in cases
(a) and (b), respectively. This growth-maximizing patent breadth will be incomplete8 and
length will be finite, if the economy has a positive rate of population growth, or even a
negative rate of population growth with absolute value less than the capital depreciation
rate. In contrast, this growth-maximizing patent breadth will be complete and length will
be infinite, if the economy has a negative rate of population growth that coincides with
the capital depreciation rate. If, on the other hand, population growth is negative but
its absolute value exceeds the capital depreciation rate, then growth-maximizing patent
breadth can extend beyond complete. Therefore, we obtain a steady state per capita out-
put growth, as the unique growth-maximizing patent protection policy exists even for a
negative rate of population growth, validating the Empty Planet result of Jones (2022).

Furthermore, under cases (a) and (b), the obtained unique growth-maximizing patent
breadth and length for a given population growth rate loosens (tightens) as the population
growth rate increases (decreases). It implies that, in general, a country with a lower rate
of population growth should have a more stringent growth-maximizing patent protection
policies than others. Figure 2 shows that the US has tighter patent protection policy
than India throughout the sample, and the US population growth trend line always lies
below India’s trend line. In addition, Figure 2 also shows that India tightened its patent
protection policies with a decline in the population growth rate. In line with prediction of
our model, India’s per capita GDP increased possibly due to growth-maximizing patent
protection policies. Similar predictions can also be drawn for the US.

Fig. 2: The patent protection policy and population growth rate.
Source: The World Bank & Park et al. (2008)

8 The intermediate input producer is allowed to charge a price that is less than, equal to, or higher than the
monopoly price under incomplete, complete, and beyond complete patent breadth protection.
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This study is organized as follows. Section 2 presents the model and analyzes the
growth implication of patent breadth under the assumption of infinite patent length. Sec-
tion 3 analyzes the growth implication of patent length under the assumption of complete
patent breadth. Section 4 concludes the study.

2 The Model

We consider the variety expansion model in a two-period overlapping generations frame-
work with lab-equipment type R&D specification.The economy is consisting of three types
of agents: producer of the final output, R&D entrepreneurs, and households. The pro-
ducer of final output employ labor and differentiated capital inputs in Rivera-Batiz and
Romer (1991) production technology to produce the final output, which is sold at the nor-
malized unitary price. The R&D entrepreneurs devote resources to invent new varieties
(blueprints). Once a new blueprint has been invented, successful entrepreneur obtains a
patent, creating a monopoly and selling the input at the monopolist’s price. Households
are finitely-lived and can live for at most two-periods defined as their young and old ages.
S/he dies at the start of old age with a probability 1− µ and lives through old age with
a probability µ.9 Therefore, at any point in time, the economy is composed of 2 cohorts:
the Young and the Old. Each young agent is endowed with one unit of labor that they
supply inelastically. Old agents retire and consume by dis-saving. In each period t, Lt

young agents are born and grow at the constant rate n ∈ (-1,∞). That is,

Lt+1 = (1 + n)Lt; n ∈ (−1,∞). (1)

Therefore, the population of an economy may either increase, remain fixed or decrease
according to the positive, zero and negative values of n.

2.1 The Household Sector

A representative agent consumes only one good, the final good produced by perfectly
competitive firms, and derives utility from his or her lifetime consumption: consumption
when young and consumption when old. We assume that the utility specification is inter-
temporal logarithmic. As a result, the lifetime expected utility of a representative agent
born at period t is,

Ut = lncY,t + µlncO,t+1, (2)

where cY,t is consumption at young and c0,t+1 is consumption at old. At Young, the
representative agent supplies his or her labor inelastically to the production sector and
earns wage wt that s/he allocates between current consumption cY,t and saving st. The
uncertainty regarding old age survival makes old age consumption also uncertain. As a
result, each agent obtains insurance by utilising savings to purchase actuarial notes in
order to mitigate risk. Following Blanchard (1985), we assume an actuarially fair annuity
market, in which the survivor receives 1+rt+1

µ
st in exchange for the insurance company’s

saving, st. Moreover, similar to Grossman and Helpman (1991), we assume that capital
is held as shares of monopolist firms. The representative agent retires (if s/he survives)
and consumes using return. Thus, the inter-temporal budget constraints are,

cY,t = wt − st, (3)

cO,t+1 =

[
1 + rt+1

µ

]
st. (4)

9 Households setup is similar to Tabata (2015) and Morimoto et al. (2018).
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Because only a positive interest rate motivates the agent to invest, we assume rt ∈
[0,∞) ∀t. Now, maximizing Equation (2) with respect to the inter-temporal budget con-
straints given by Equations (3) and (4) gives optimal saving,

st =
wt

1 + µ−1
, (5)

which maximizes the expected lifetime utility of an agent. This optimal saving increases
with the labor income wt and survival probability µ. The aggregate saving of the economy
is equal to the aggregate saving by the young:

St =
wtLt

1 + µ−1
. (6)

2.2 The Final Good Sector

The producer of the final output operates in a perfectly competitive environment, employ-
ing labor from the households and differentiated capital inputs10 from the monopolists to
produce a single output in the economy. We assume CRS (Constant Returns to Scale)
production technology11,

Yt = L1−α
t

∫ Nt

0

Kα
i,t di; α ∈ (0, 1), (7)

where, Lt is the labour supply, Nt is the available machine varieties, Ki,t is the utilization
level of ith machine variety at period t and, α is the share of the inputs.

Let wt, and pi,t represent the wage and the rental price for the labor and the specialized
machine variety i ∈ (0, Nt] at period t, respectively. The CRS and perfect competition
assumptions then imply that final output producer earns a normal profit and assigns a
wage and a rental price to their respective marginal productivities.

wt = (1− α)L−α
t

∫ Nt

0

Kα
i,t di = (1− α)

Yt

L t
(8)

pi,t = αL1−α
t Kα−1

i,t ; ∀i ∈ (0, Nt]. (9)

The Equation (9) is the inverse demand of the input i ∈ (0, Nt] at the rental price pi,t,
indicating that producers of the final output demand more inputs at a lower price. The
final demand of the ith machine at the rental price pi,t can be written as,

Ki,t =

(
α

pit

) 1
1−α

Lt. (10)

2.3 The Monopolistic Sector

The economy has a continuum of input varieties i ∈ (0, Nt] at any given time t, each of
which is produced by its respective patent owner or monopolist. At each period t, the
patent owner of the ith variety borrows raw physical capital from the households at the

10 We assume differentiated inputs are investment input (physical capitals or machines) following Iwaisako and
Futagami (2013) and Diwakar et al. (2021).

11 The CRS production technology is most widely used in growth literature, implying that a proportional change
in inputs changes the final output proportionally.
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net interest rate rt+1 and transforms each unit of raw physical capital into one specialized
machine at no additional cost. At period (t+1), machines are then rented to the final-good
producer at the rental price pi,t+1.

12

Let the specialized machines depreciate at a constant rate δ ∈ (0, 1] per period. As a
result, the average cost of raw capital is δ+ rt+1, and given the demand for ith specialized
machine, the profit flow of ith patent owner or monopolist at time t+1 can be written as,

πi,t+1 = [pi,t+1 − (δ + rt+1)]Ki,t+1 = [pi,t+1 − (δ + rt+1)]

(
α

pi,t+1

) 1
1−α

Lt+1. (11)

A monopolist maximizes profit by setting the optimal price.13 At period t+1, the ith

patent owner or monopolist maximizes profit flow by setting the price of the ith machine
equal to,

pi,t+1 =
δ + rt+1

α
≡ pt+1 ∀ i ∈ (0, Nt+1]. (12)

2.4 Patent Breadth

Assume that the government limits the patent owner’s ability to charge an unconstrained
monopolist’s price by introducing a patent breadth.14 We measure patent breadth using
parameter λ, which modifies the monopolist’s price to15

pt+1,λ =
λ(δ + rt+1)

α
; λ ∈ [0,∞). (13)

When λ = α, the price that the monopolist is allowed to charge pt+1,λ is equal to the
marginal cost of (input) production (δ + rt+1), and the monopolist completely loses his
or her market power. However, when λ becomes one, s/he is allowed to charge an uncon-
strained monopolist price.16 An increase in patent breadth λ, increases the monopolist’s
market power by enabling the monopolist to charge the higher monopolist’s price.

The actual per capita demand for each specialized machine or input at the monopolist’s
price pt,λ in period t is,

Ki,t

Lt

=

[
α2

λ(δ + rt)

] 1
1−α

≡ kt,λ; ∀ i ∈ (0, Nt]. (14)

Tightening the patent breadth increases the monopolist’s price for the input i ∈ (0, Nt],
thereby decreasing the final good producer’s per capita demand and subsequently the
economy’s aggregate demand for machines, deterring economic growth. By raising aggre-
gate demand for machines at least to the prior level, an increase in the population growth
rate has the potential to resolve this problem.17 After plugging the monopolist’s price

12 Investment inputs take one period to form and are then available for rent or use.
13 First order condition gives the optimal price of each input.
14 In this section, we assume that the government only uses patent breadth as a patent protection tool and takes

patent length as fixed and infinite.
15 This modeling approach is widely used in patent policy and growth literature; for example, see Goh and Olivier

(2002), Iwaisako and Futagami (2013), Zeng et al. (2014), Chu et al. (2016) and Diwakar et al. (2021). The
subscript λ is used to indicate variables after the patent breadth protection is implemented.

16 The patent breadths λ = 1 and λ < 1 represents complete and incomplete patent breadth protection, respec-
tively. Later, using Equation (27), we will see that the patent breadth λ can extend beyond complete.

17 Diwakar et al. (2021) ignores the possibility that population growth rate can restore demand for machines.
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pt+1,λ in Equation (11) and using Equation (14), we get the profit of each input producer
or owner in period t+1 as,

πt+1,λ = α
(
1− α

λ

)
kα
t+1,λLt+1. (15)

Then, plugging the actual demand Ki,t ≡ kt,λLt for each input i ∈ (0, Nt] in Equation (7),
we get the optimal per capita output that is produced in each period t,

Yt,λ

Lt

= kα
t,λNt ≡ yt,λ. (16)

Moreover, we get the aggregate saving of the economy using Equations (8) and (16) in
Equation (6),

St,λ =
(1− α)Yt

1 + µ−1
=

(1− α)kα
t,λNtLt

1 + µ−1
. (17)

2.5 The R&D Sector

We consider lab-equipment type R&D specification as proposed by Rivera-Batiz and
Romer (1991). An entrepreneur can invent a new variety blueprint in period t by de-
voting ηt units of output. We assume that the cost of inventing a new variety blueprint
ηt is given by ηLt.

18 Additionally, we assume free entry conditions in the R&D sector.
An entrepreneur who values patent above R&D costs and is prepared to bear those costs,
can enter the R&D sector. At equilibrium (or at the zero profit condition), the value of
patent must equal the R&D cost. Therefore, the patent owner or inventor of a specialized
variety of machine (or input) can obtain a profit πt+1,λ and a capital gain or suffer a loss
(ηt+1 − ηt) by investing ηt units of funds in patents.19 Furthermore, investing ηt units of
funds in the risk-free asset gives net return rt+1ηt.

The no-arbitrage condition, which equates the net rate of return on a risk-free asset
to the net rate of return on investment in a patent, can therefore be expressed as follows:

rt+1ηt = πt+1,λ + (ηt+1 − ηt). (18)

By entering the monopolist’s profit and R&D cost in the no-arbitrage condition, we can
obtain the implicit expression for interest rate.

1 + rt+1 =

{
α

η

(
1− α

λ

)
kα
t+1,λ + 1

}
(1 + n). (19)

Lemma 1 There exists a unique stationary interest rate in the economy.20

Proof. Let f(rt) = 1 + rt −
{

α
η

(
1− α

λ

)
kα
t,λ + 1

}
(1 + n).

Since f(rt) is continuous and f(0) < 0, f(∞) > 0 for any finite n ∈
(

−(λ−α)α
1+α
1−α

ηλ(λδ)
α

1−α+(λ−α)α
1+α
1−α

,∞
)
.21

Hence by IVP (Intermediate Value Property), ∃ r∗t ∈ (0,∞) such that f(r∗t ) = 0.

18 We follow Barro and Sala-i Martin (2004), Laincz and Peretto (2006), Sorek and Diwakar (2017), and Nakabo
and Tabata (2018) to define the cost of a new variety blueprint, which eliminates the scale effect.

19 We have assumed that the length of a patent is fixed and infinite. Therefore, the old (the patent owner of a
variety of specialized machine invented in the past) sell their patent to the young at a price equal to the new
R&D cost. That is, the market value of the old patent is equal to the R&D cost of the new one.

20 Diwakar et al. (2021) has found an unique stationary interest rate for fixed population. However, in our study,
population can increase or decrease as n ∈ (−1,∞).

21 A restriction, n ∈
(

−(λ−α)α
1+α
1−α

ηλ(λδ)
α

1−α +(λ−α)α
1+α
1−α

,∞
)

is required to fulfill the economic assumption that interest rates

are not negative.
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We are left with the proof of uniqueness only; for this, we use contradiction. Let us
assume r∗∗t (̸= r∗t ) is another interest rate such that f(r∗∗t ) = 0. Since f(rt) is contin-
uous in [0, r∗t ] and differentiable in (0, r∗t ). Also, f(r

∗
t ) = f(r∗∗t ) = 0. Hence by Rolle’s

theorem, ∃ r∗∗∗t ∈ (r∗t , r
∗∗
t ) such that f ′(r∗∗∗(t)) = 0. It is a contradiction because

f ′(rt) > 0 ∀rt ∈ (0,∞). Moreover, rt depends on the parameters22 only; therefore, the
unique positive interest rate is stationary. That is, rt = r∗λ(> 0),∀t.

The monopolist’s price or markup pt,λ and the per capita demand for each machine
or input kt,λ, have both become stationary at the stationary interest rate r∗λ, and are

denoted by pλ and kλ respectively. The per capita output growth rate gy,λ =
Yt+1,λ

Yt,λ

Lt

Lt+1
−1

can be obtained by using Equation (16). We get the per capita output growth rate gy,λ =
Yt+1,λ

Yt,λ

Lt

Lt+1
−1 to be exactly equal to the variety growth rate gN,λ = Nt+1

Nt
−1.23 We represent

this by gλ.

gy,λ = gN,λ = gλ (20)

Thus, the optimal patent breadth λo that maximizes variety growth gN,λ also maximizes
per capita output growth gy,λ.

Lemma 2 The stationary interest rate r∗λ increases as the population growth rate n
and the patent breadth λ rise. It, on the other hand, decreases as the per capita R&D
cost of innovating a new blueprint η and the depreciation rate δ rise.24

Proof . The implicit expression for the stationary interest rate can be written as,

1 + r∗λ =

{
α

η

(
1− α

λ

)
kα
λ + 1

}
(1 + n), (21)

where kλ = [ α2

λ(δ+r∗λ)
]

1
1−α . With loosening patent breadth protection or decreasing depre-

ciation rate, kλ increases.25 Differentiating the stationary interest rate given in Equation
(21) with respect to n, λ, η and δ respectively, we get

∂r∗λ
∂n

=
(1− α)(1 + r∗λ)(δ + r∗λ)

(1 + n)[(δ + r∗λ)− α(δ + n)]

∂r∗λ
∂λ

=
α(1− λ)(r∗λ − n)(δ + r∗λ)

λ(λ− α)[(δ + r∗λ)− α(δ + n)]

∂r∗λ
∂η

=
−(1− α)(r∗λ − n)(δ + r∗λ)

η[(δ + r∗λ)− α(δ + n)]

22 The parameters are α, δ, λ, η, and n, but the main variable of interest is λ.
23 Since we have shown that interest rate is time invariant, it makes the per capita demand for each machine also

stationary. Furthermore, we will use the stationary interest rate from now on.
24 Diwakar et al. (2021) do not analyze the effect of population growth on the stationary interest rate. It plays an

important role in our analysis. Its significance is highlighted in Proposition 2, which contradicts Diwakar et al.
(2021)’s prediction. Furthermore, the stationary interest rate’s relationship with other parameters is consistent
with Diwakar et al. (2021).

25 See Appendix A1 for details.
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∂r∗λ
∂δ

=
−α(r∗λ − n)

[(δ + r∗λ)− α(δ + n)]
.

From Equation (21), we find that r∗λ > n. Therefore,
∂r∗λ
∂n

> 0,
∂r∗λ
∂λ

> 0,
∂r∗λ
∂η

< 0 and,
∂r∗λ
∂δ

< 0.

The stationary interest rate r increases with the population growth rate n and the
patent breadth λ. This is due to an increase in demand for raw capital eventually lead-
ing to rise in interest rate. An increment in the population growth rate n increases the
market size, leading to higher demand for each specialized machine. The demand for raw
capital rises as monopolists use raw capital to create these specialized machines. Tight-
ening patent breadth λ, on the other hand, increases the monopolist’s market power and
encourages entrepreneurs to invest ηt capital in R&D to innovate a new blueprint or buy
an old patent. It increases the demand for raw capital. In contrast, the stationary interest
rate r decreases as per capita R&D cost of innovating a new variety’s blueprint η and
depreciation rate δ rise. This is because an increase the cost of the new blueprint inven-
tion and the specialized machine production, through an increase in η and δ, respectively,
decreases the demand for raw capital and lowers the interest rate.

2.6 Capital Market Clearing Conditions

At any time t, the aggregate investment It,λ can be obtained by aggregating investment
in buying old patents, in acquiring new patents on (blueprint) inventions, and in the
formation of differentiated machines. Therefore, the aggregate investment at the time t is
given by,

It,λ =

∫ Nt+1

0

[ηt +Ki,t+1] di = [η + (1 + n)kλ]Nt+1Lt. (22)

The market clearing condition is an equilibrium point at which the economy’s aggre-
gate saving St,λ, is translated into the economy’s aggregate investment It,λ. Now, if we set
St,λ equal It,λ at the stationary interest rate, we get the variety growth rate, which is also
equal to the per capita output growth.26

gλ =
Nt+1

Nt

− 1 =
(1− α) kα

λ

(1 + µ−1)[η + (1 + n) kλ]
− 1. (23)

Lemma 3 A sufficiently small per capita R&D cost of innovating a new variety’s
blueprint η is required for positive per capita output growth.27

Proof . See Appendix A2 for the proof of Lemma 3.

A sufficiently low per capita R&D cost of innovating a new variety’s blueprint makes
R&D participation affordable to the masses of entrepreneurs by lowering the R&D cost
of innovation. This spurs variety growth in the economy and leads to positive per capita

26 For the sake of simplifying notation, Diwakar et al. (2021) has assumed ψ = k1−α
λ , and the term has no

economic meaning. By setting n = 0, Equation (23) of this paper matches with Equation (9) of Diwakar et al.
(2021) .

27 Diwakar et al. (2021) get the same result with R&D cost instead of per capita R&D cost.

10



output growth.

Proposition 1 An inverted-U relationship exists between per capita demand for dif-
ferentiated specialized machines and per capita output growth.

Proof . Differentiating the per capita output growth gλ in Equation (23) with respect
to the per capita demand for differentiated specialized machines kλ, we get

∂gλ
∂kλ

=
(1− α) kα−1

λ

(1 + µ−1) [η + (1 + n)kλ]2
[αη − (1 + n)(1− α)kλ]. (24)

The per capita output growth gλ increases (decreases) with the per capita demand for
differentiated, specialized machines kλ, if kλ < (>) αη

(1+n)(1−α)
. However, kλo = αη

(1+n)(1−α)
is

the critical point at which the per capita output growth may have an extrema.
Differentiating Equation (24) with respect to kλ at kλo = αη

(1+n)(1−α)
, we get[

∂2gλ
∂k2

λ

]
kλ=kλo

=
−(1 + n)(1− α)2kα−1

λ

(1 + µ−1)
[
η + αη

1−α

]2 < 0.

Therefore, the per capita output growth will be maximum at kλo = αη
(1+n)(1−α)

.
Loosening patent breadth λ, the policy variable in our model, raises per capita demand

for differentiated, specialized machines (see Section A1 in the Appendix), which increases
(decreases) per capita output growth depending on whether kλ < (>) αη

(1+n)(1−α)
. How-

ever, it is maximum at kλo = αη
(1+n)(1−α)

.

Corollary 1 An inverted-U relationship exists between patent breadth and per capita
output growth.28

Proof . The per capita demand for differentiated specialized machines increases with
loosening of patent breadth. As a result, Corollary 1 follows from Proposition 1.

The term ”optimal patent breadth” refers to the patent breadth that maximises eco-
nomic growth. According to Proposition 1, growth is maximized at kλo = αη

(1+n)(1−α)
.

Therefore, the patent breadth λo is optimal if it makes the per capita demand for differ-
entiated specialized machines at kλo . At this optimal patent breadth λo, the economy has
an explicit expression for the interest rate,29

r∗λo =
(λo − α)δ + (1− α)n

1− λo
. (25)

Moreover, at λo, when the per capita output growth is maximized with per capita de-
mand for differentiated specialized machines kλo , the proportion of aggregate investment
devoted to machine formation equals share of machines and the proportion of aggregate
investment devoted to patents equals share of labor, each period.30 Beyond this point, the
per capita output growth is less than the maximum and may either increase or decrease
with an increase in per capita demand for specialized machines. Therefore, a loosening

28 Nakabo and Tabata (2018) also obtained an inverted-U relationship between patent breadth and economic
growth rate.

29 See Appendix A3 for details.
30 See Appendix A4 for details.
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Fig. 3: An inverted-U relation between per capita demand for differentiated specialized
machines and per capita output growth.
Note: The vertical axis represents per capita output growth, while the horizontal axis
represents per capita demand for differentiated specialized machines and the strength of
patent breadth. Moving left to right on the horizontal axis increases per capita demand
for differentiated specialized machines kλ ∈ [0,∞) and decreases the strength of patent
breadth λ ∈ [0,∞).

patent breadth which increases the demand for specialized machines, will increase (de-
crease) per capita output growth whenever the proportion of investment devoted to ma-
chine formation is less (more) than the share of machines and the proportion of investment
devoted to patents is more (less) than the share of labor.

For the case of complete patent breadth protection λ = 1, from Equation (14) the per

capita demand for specialized machines at the stationary interest rate is k1 = ( α2

δ+r∗1
)

1
1−α .

If n ≥ (≤) − δ, then k1 ≤ (≥)kλo .31 Therefore, the per capita output growth can not
be maximized at the complete patent breadth protection when n ̸= −δ, that is λo ̸= 1
for n ̸= −δ. Moreover, the optimal patent breadth λo will be complete if the population
growth rate n is equal to −δ, as the per capita demand for differentiated specialized
machines becomes equal to the optimal demand at which growth is maximum.

Furthermore, the case with zero patent breadth λ = α, cannot be the optimal because
monopolist’s price is equal to the marginal cost of producing a differentiated, specialized
machine. Therefore, no one will devote resources for obtaining a patent and, growth will
be zero.

31 kλo − k1 = αη
(1+n)(1−α)

− ( α2

δ+r∗1
)

1
1−α = αη

(1+n)(1−α)
− αη(r∗1−n)

(1+n)(1−α)(δ+r∗1 )
= αη(δ+n)

(1+n)(1−α)(δ+r∗1 )
.
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Proposition 2 The optimal patent breadth λo that maximizes per capita output
growth decreases as population growth rate n increases.32

Proof . According to Proposition 1, per capita output growth maximizes at per capita
demand for differentiated, specialized machines, αη

(1+n)(1−α)
. Hence, the optimal patent

breadth λo is given by, [
α2

λo(δ + r∗λo)

] 1
1−α

=
αη

(1 + n)(1− α)
, (26)

where r∗λo represents the stationary interest rate at λo. We get the optimal patent breadth
locus with the population growth rate by plugging the stationary interest rate from Equa-
tion (25) in Equation (26).

λo =
α2

(
1−α
αη

)1−α

(1 + n)1−α

(1− α)(δ + n) + α2
(

1−α
αη

)1−α

(1 + n)1−α

. (27)

It is obvious that the optimal patent breadth is complete when the population growth
rate n equals the negative of the capital or machine depreciation rate −δ, and incomplete
when n ∈ (−δ,∞). However, the optimal patent breadth can extend beyond complete
when n ∈ (−1,−δ).

Now differentiating the optimal patent breadth expression given in Equation (27) with
respect to the population growth rate n, we get

∂λo

∂n
=

−α2(1− α)
(

1−α
αη

)1−α

(1 + n)−α [(1− δ) + α(δ + n)][
(1− α)(δ + n) + α2

(
1−α
αη

)1−α

(1 + n)1−α

]2 . (28)

Clearly ∂λo

∂n
< 0,33 implying that the optimal patent breadth λo decreases as population

growth rate n increases.
An increase in the population growth rate n expands the market, resulting in higher

aggregate demand for inputs or differentiated, specialized machines. It raises the demand
for raw capital because monopolists require more capital to meet the increased demand.
Therefore, an increase in n raises the stationary interest rate r∗λo , which raises the marginal
cost (δ+r∗λo) of machine formation for each variety. The increased marginal cost increases
the rental price of each specialized machine pλo , eventually lowering the per capita de-
mand for differentiated specialized machines below the optimal per capita demand kλo .
However, Proposition 1 suggests that optimal per capita demand for differentiated spe-
cialized machines maximizes per capita output growth. A loosening patent breadth helps
in meeting optimal per capita demand. Thus, as the population growth rate n rises, the
optimal patent breadth λo that maximizes per capita output growth decreases. In other
words, a country with a lower rate of population growth should have a tighter optimal

32 Diwakar et al. (2021) predicts a positive relationship between optimal patent breadth λo and effective labor
supply for any positive capital depreciation, as in their model the stationary interest rate is independent of the
population growth rate.

33 Equation (28) suggests that ∂λo

∂n
≥ 0 if n ≤ −

[
δ + 1−δ

α

]
, and a positive correlation exists between growth-

maximizing patent breadth and population growth rate. But n ≤ −
[
δ + 1−δ

α

]
implies 1+n < 0. This contradicts

our assumption n ∈ (−1,∞). Thus, n ≤ −
[
δ + 1−δ

α

]
is not possible, and ∂λo

∂n
always be negative.
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patent breadth than others.

Proposition 3 The optimal patent breadth λo that maximizes per capita output
growth, increases as depreciation rate δ ∈ [0, 1) decreases.34 Additionally, it is negatively
correlated with per capita R&D cost of innovating a new variety’s blueprint η when
n ∈ (−δ,∞).

Proof . Differentiating the optimal patent breadth λo in Equation (27) with respect
to the depreciation rate δ, we get

∂λo

∂δ
=

−α2(1− α)
(

1−α
αη

)1−α

(1 + n)1−α[
(1− α)(δ + n) + α2

(
1−α
αη

)1−α

(1 + n)1−α

]2 < 0.

Thus, the optimal patent breadth λo increases as the depreciation rate δ decreases. An
economy with lower capital or machine depreciation must pursue tighter patent breadth
protection in comparison to others.

A decreasing δ reduces the marginal cost (δ + r∗λo) of machine formation35, resulting
in low rental prices pλo for differentiated specialized machines. As a result, per capita
demand for differentiated specialized machines rises above the optimal per capita demand
kλo , while the per capita output growth falls below the optimal gλo . A tightening patent
breadth helps in meeting the optimal per capita demand. Thus, the optimal patent breadth
λo that maximizes per capita output growth increases as the depreciation rate δ decreases.

Moreover, differentiating the optimal patent breadth λo given in Equation (27) with
respect to the per capita investment in inventing a new blueprint η, we get

∂λo

∂η
=

−α3(1− α)(δ + n)
(

1−α
αη

)2−α

(1 + n)1−α[
(1− α)(δ + n) + α2

(
1−α
αη

)1−α

(1 + n)1−α

]2 .
Thus, for n ∈ (−δ,∞), the optimal patent breadth λo decreases with an increase in the
per capita investment η in innovating a new blueprint variety. An economy with positive
population growth and lower per capita investment in R&D innovation of a new blueprint
variety must pursue tighter patent breadth protection in comparison to others.

The cost of innovation rises as the per capita R&D cost of developing a new variety’s
blueprint rises. As a result, the proportion of investment devoted to patent increases in
relation to the labor share, implying that the proportion of investment devoted to ma-
chine formation is less than its share. However, Proposition 1 suggests that when the
proportion of investment devoted to machine formation equals its share, growth will be
maximized. A loosening patent breadth increases per capita demand for machines while
reducing the proportion of investment devoted to the machines formation to its share.

34 Our finding on the relationship between optimal patent breadth and capital depreciation rate is consistent with
that of Diwakar et al. (2021).

35 ∂
∂δ

(δ + r∗λo) =
(1−α)(δ+r∗λo )

[(δ+r∗
λo )−α(δ+n)]

> 0.
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Thus, the optimal patent breadth λo that maximizes per capita output growth decreases
as the per capita R&D cost of innovating a new variety’s blueprint increases.

Ceteris Paribus, another interpretation of Proposition 3 is that a country with a lower
(higher) depreciation rate and per capita R&D cost should have a tighter (weaker) opti-
mal patent breadth protection than others.

Proposition 4 The optimal patent breadth λo and share of machine α are positively
correlated for an economy with per capita demand for machines kλo ∈ (1,∞) and popu-
lation growth n ∈ (−δ,∞).

Proof . Differentiating the optimal patent breadth λo given in Equation (27) with
respect to the share of physical capital or machine α, we get

∂λo

∂α
=

η(δ + n)(λo)2

α2(1 + n)kα
λo

[
1

1− α
+ αlnkλo

]
,

where kλo = αη
(1+n)(1−α)

. Thus, increasing machine’s share α increases the optimal patent

breadth protection λo whenever n ∈ (−δ,∞) and kλ0 ≥ 1.

An increasing α reduces the monopolist’s prices pλo for differentiated specialized ma-
chines. Therefore, per capita demand for the differentiated specialized machines rises
above the optimal per capita demand kλo , while per capita output growth falls below the
optimal gλo . A tightening patent breadth helps in meeting the optimal per capita demand
back. Thus, the optimal patent breadth λo that maximizes per capita output growth in-
creases as physical capital share α increases.

Proposition 5 The maximal per capita output growth gλo at optimal patent breadth
protection λo, decreases with population growth rate n and per capita R&D cost of in-
venting a new variety’s blueprint η. Moreover, it increases with the survival probability
µ.36

Proof . At the optimal patent breadth protection λo, the per capita demand for
specialized machines kλo becomes αη

(1+n)(1−α)
. Therefore, the maximal per capita output

growth rate can be written as

gλo =

(
1− α

1 + µ−1

)(
1− α

η

)1−α(
α

1 + n

)α

− 1. (29)

Clearly, ∂gλo
∂n

< 0, ∂gλo
∂η

< 0 and, ∂gλo
∂µ

> 0.

Increases in population growth rate n and per capita R&D cost of inventing a new
variety’s blueprint η, decreases optimal patent breadth protection λo. This reduces the
incentive for researchers to develop new blueprint variants, resulting in lower per capita
output growth. However, maximal economic growth at the optimal patent breadth λo

increases with survival probability by increasing aggregate economic saving, which trans-
lates into investment.

36 The relationship between per capita output growth and population growth rate is found to be consistent with
the neoclassical growth model.
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According to Equation (29), the maximal per capita output growth is stationary, which
implies that the maximal per capita output growth is stagnant at a fixed level, even if
the population is declining, as n ∈ (−1, 0). The negative n ultimately empties the people
of the economy and shows the Empty Planet result of Jones (2022): where the economy
stagnates at a positive per capita output growth but with no population.

3 Patent Length

This section investigates the implications of patent-length policy instruments for economic
growth under complete patent breadth.37 The patent length refers to the duration of a
new invention’s patent from the time it is granted until it expires. Assume that the
government granted a stochastic patent length for every new invention that expires in the
next and following periods from the moment it is granted, with a probability of 1 − π,
where π ∈ [0, 1].38 As a result, in each period, the expected lifetime of new and old patents
that survive is given by,

E(T ) = 1 +
π

1− π
.

The number of available varietiesNt at any period t is the sum of the monopolized varieties
Nm,t with patents and the competitive varieties Nc,t without patents

39:

Nt = Nm,t +Nc,t.

The number of monopolized varieties in the economy is given by the sum of renewed
existing varieties and the newly invented varieties.40 That is,

Nm,t+1 = π[fm,tNt] + (Nt+1 −Nt), (30)

where fm,t =
Nm,t

Nt
represents the fraction of monopolized varieties in period t. By dividing

both sides of Equation (30) by Nt+1, we get

fm,t+1 =
πfm,t

1 + gN,t+1

+
gN,t+1

1 + gN,t+1

,

where gN,t+1 = Nt+1

Nt
− 1 represents the variety growth rate of the economy at period

t + 1 under the current patent protection policy. Assuming that the variety growth rate
is stationary, that is gN,t+1 = gN ∀t, then the fraction of monopolized varieties converges
to the stationary level, as denoted by fm:

fm =
gN

1 + gN − π
. (31)

By modifying the final good production technology given in Equation (7) to include
both monopolized and competitive machine varieties, we get

Yt = L1−α
t Nt

[
fmK

α
m,t + (1− fm)K

α
c,t

]
, (32)

37 We assume that the government mainly uses patent length as a tool for patent protection and sets the patent
breadth complete, that is λ = 1.

38 The modeling approach of patent length follows Helpman (1993), Kwan and Lai (2003), Cysne and Turchick
(2012) and Diwakar et al. (2021).

39 Because some patents are expiring in every period, the economy ends up with competitive varieties in every
period.

40 Nm,t+1 = πNm,t + (Nt+1 −Nt) = π
[
Nm,tNt

Nt

]
+ (Nt+1 −Nt) = π[fm,tNt] + (Nt+1 −Nt).
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where Km,t and Kc,t represents the aggregate demand for monopolized and competitive
machine varieties, respectively. This aggregate demand for monopolized and competitive
machine varieties can be written as,

Km,t = kmLt and Kc,t = α
−1
1−αkmLt, (33)

where km =
[

α2

δ+r∗

] 1
1−α

is the per capita demand for differentiated monopolized machine

varieties, which decreases with stationary interest rate.41 We get the per capita demand
for output at each period by plugging Equations (31) and (33) into (32).

yt =
Yt

Lt

=

(
1 +

1− π

gN
α

−α
1−α

)
fmk

α
mMt. (34)

According to Equation (34), the per capita output growth rate gy coincides with the
variety growth rate gN under the current patent policy. This coincide value is denoted by
gπ. That means,

gN = gy = gπ. (35)

Under the current patent policy, the aggregate investment in each period is obtained
by summing investments in new patent inventions, ownership of old survived patents,
formation of monopolized machines, and formation of competitive machines. Therefore,

It = Mm,t+1(ηt +Km,t+1) +Mc,t+1Kc,t+1

=

{
η + (1 + n)

(
1 +

1− π

gπ
α

−1
1−α

)
km

}
fmMt+1Lt.

(36)

However, the aggregate saving of the economy is obtained by using Equations (6), (8) and
(34). Therefore,

St =
(1− α)

(
1 + 1−π

gπ
α

−α
1−α

)
fmk

α
mMtLt

1 + µ−1
. (37)

The markets are clear when aggregate saving equals aggregate investment, that is,
when the economy’s aggregate saving is translated into aggregate investment. Imposing
St = It, yields the implicit expression for the per capita output growth rate:

1 + gπ =
(1− α)

(
1 + 1−π

gπ
α

−α
1−α

)
kα
m

(1 + µ−1)
[
η + (1 + n)

(
1 + 1−π

gπ
α

−1
1−α

)
km

] . (38)

Equation (38) gives positive per capita output growth for sufficiently low per capita
R&D costs of innovating a new variety’s blueprint,42 but falls back to Equation (23) for
π = 1, at infinite patent length. The stationary interest rate given in Equation (18) under
the current patent policy can be written as,

r∗ηt = πm,t+1 + (πηt+1 − ηt)

1 + r∗ =

{
α

η
(1− α)kα

m + π

}
(1 + n),

(39)

41 The prices charged for monopolized and competitive machine varieties under current patent policy are δ+r∗

α
and

δ+ r∗. Therefore, Equation (10) gives Km,t =
[

α2

δ+r∗

] 1
1−α

Lt and Kc,t =
[

α
δ+r∗

] 1
1−α

Lt = α
−1
1−α

[
α2

δ+r∗

] 1
1−α

Lt.
42 As, η → 0 =⇒ r∗ → ∞ which implies that km → 0. Therefore, limη→0(1 + gπ) = ∞.
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where πm,t+1 = α(1−α)kα
mLt+1 represents the monopolized owner’s profit at period t+1.

This stationary interest rate r∗ increases with the survival probability π, as ∂r∗

∂π
> 0. An

increase in the probability of survival raises the aggregate demand for capital for inputs
or machines formation, which raises the rental price of capital.

The per capita demand for monopolized machine variety decreases as the stationary
interest rate rises (∂km

∂r∗
< 0), and the stationary interest rate rises as the survival proba-

bility rises. As a result, the per capita demand for monopolized machine variety decreases
with survival probability, that is: ∂km

∂π
< 0.43

Lemma 4 The per capita demand for differentiated monopolized machines and out-
put growth rate at π = 1−δ

1+n
, coincides with the optimal per capita demand for differenti-

ated specialized machines and output growth rate at the optimal patent breadth λo. 44

Proof . By substituting π = 1−δ
1+n

in Equation (39), we get

km =
αη

(1 + n)(1− α)
= kλo . (40)

The per capita demand for differentiated monopolized machines at the survival probability
π = 1−δ

1+n
is equal to the per capita demand for differentiated specialized machines obtained

at the optimal patent breadth λo, according to Equation (40). Now, substituting π = 1−δ
1+n

and plugging Equation (40) in Equation (38), we get

[gπ]π= 1−δ
1+n

=

(
1− α

1 + µ−1

)(
1− α

η

)1−α(
α

1 + n

)α

− 1 = gλo . (41)

According to Equation (41), the per capita output growth at the survival probability
π = 1−δ

1+n
coincides with the per capita output growth at the optimal patent breadth λo.

However, the patent survival probability, which gives Lemma 4, decreases with the pop-
ulation growth rate.

Proposition 6 If the patent survival probability follows the locus π = 1−δ
1+n

and the
population growth rate n ∈ (−δ,∞) declines, the per capita output growth gπ increases
with the patent survival probability π.

Proof . Differentiating the per capita output growth given in Equation (38) with
respect to the patent survival probability π, we get

∂gπ
∂π

=

(1+n)(1−α)kα−1
m

[
∂km
∂π

(
gπ+(1−π)α

−α
1−α

){
(kλo−km)gπ−km(1−π)α

−1
1−α

}
−α

−1
1−α (kλo−km)gπkm

]

α
−1
1−α kαm(1−π)(1−α)(1+n)(kλo−km)+

(1+µ−1)
(1−α)

[
η+(1+n)

(
1+1−π

gπ
α

−1
1−α

)
km

]2 (42)

At π = 1−δ
1+n

, we have km = kλo (using Equation (40)). Thus, Equation (42) at π = 1−δ
1+n

implies

[ ∂gπ∂π ]π= 1−δ
1+n

=

−(1+n)(1−α)( δ+n
1+n)α

−1
1−α kαm

(
gπ+( δ+n

1+n)α
−α
1−α

)
∂km
∂π

(1+µ−1)
(1−α)

η+(1+n)

1+
(δ+n)α

−1
1−α

(1+n)gπ

km


2 (43)

43 ∂km
∂π

= ∂km
∂r∗

∂r∗

∂π
< 0.

44 In contrast to our study, the probability of patent survival is independent of population growth rate, and the
per capita demand for monopolized variety is not the focus in Diwakar et al. (2021).
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Equation (43) clearly shows that
[
∂gπ
∂π

]
π= 1−δ

1+n

≡
{
> 0 if n ∈ (−δ,∞)
= 0 if n = −δ

. However, it is

ambiguous for n ∈ (−1,−δ).45 Therefore, if the expected lifetime of the patent increases
due to a fall in the population growth rate n ∈ (−δ,∞), the per capita output growth
will increase along with the likelihood that the patent will survive.

4 Conclusion

Using a lab-equipment type variety expansion model with physical capital, this study
investigated the impact of population growth on the optimal patent protection policy in
an OLG economy. We discovered that an unique growth-maximizing patent protection
policy exists for any fixed population growth rate, and it can be complete or incomplete.
A complete patent protection policy cannot maximise per capita output growth in an
economy with a positive population growth rate. It must therefore be incomplete because
the growth is maximized either ”at the complete patent breadth and finite patent length”
or ”at the incomplete patent breadth and infinite patent length.” The growth-maximizing
patent protection policy will, however, be complete (i.e., complete patent breadth and
infinite patent length) if the population growth rate is equal to the negative of the capital
depreciation rate.

Additionally, we discovered that a decline in the population growth rate tightens the
growth-maximizing patent protection policy. Therefore, the length and breadth of patents
that maximise growth are inversely correlated with the rate of population growth. In
other words, ceteris paribus, a lower population growth rate economy must adopt stricter
growth-maximizing patent protection policies than other economies.

Appendix

A1. Per capita demand behaviour with patent breadth and depreciation rate

The per capita demand for the differentiated specialized machine is,

kλ =

[
α2

λ(δ + r∗λ)

] 1
1−α

. (A.1)

Now differentiating Equation (A.1) with respect to the patent breadth λ and depreciation
rate δ, respectively. We get

∂kλ
∂λ

=
−k2−α

λ

[
(δ + r∗λ) + λ

∂r∗λ
∂λ

]
α2(1− α)

< 0

∂kλ
∂δ

=
−kλ

[
1 +

∂r∗λ
∂δ

]
(1− α)(δ + r∗λ)

=
−kλ

[(δ + r∗λ)− α(δ + n)]
< 0

As a result, the per capita demand for differentiated specialized machines increases as
patent breadth is loosened and the depreciation rate is reduced.

45 The case n < −δ is not supported by data so far. For the US, δ = 0.10, and the population growth rate n is
declining but not yet touched zero.
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A2. Proof of Lemma 3

A sufficiently small per capita R&D cost of innovating a new variety’s blueprint means
η → 0. This implies that r → ∞ for any patent breadth λ ∈ (α, 1] leading to zero per
capita demand for differentiated specialized machines kλ.

lim
η→0

(gλ) =
(1− α)

(1 + µ−1)
lim
η→0

kλ
α

[η + (1 + n)kλ]
− 1 =

(1− α)

(1 + µ−1)
lim
kλ→0

kλ
α−1

1 + n
− 1 = ∞

A3. Interest rate at optimal patent breadth

At optimal patent breadth λo, the per capita demand for machines is αη
(1+n)(1−α)

. That

means, kλo = αη
(1+n)(1−α)

. Therefore, Equation (A.1) at the optimal patent breadth protec-

tion implies
[

α2

λo(δ+r∗λo )

] 1
1−α

= αη
(1+n)(1−α)

= kλo .

This implies,

kα
λo =

[
α2

λo(δ + r∗λo)

] α
1−α

=

[
α2

λo(δ + r∗λo)

] 1
1−α

[
α2

λo(δ + r∗λo)

]−1

=
αη

(1 + n)(1− α)

[
α2

λo(δ + r∗λo)

]−1

.

Now, plugging kα
λo in Equation (21) at the optimal patent breadth λo, we get an explicit

expression for the interest rate:

r∗λo =
(λo − α)δ + (1− α)n

1− λo
. (A.2)

A4. Growth-maximizing per capita demand for machines and patent breadth

At optimal patent breadth λo, the per capita demand for machines is αη
(1+n)(1−α)

. That is,

kλo = αη
(1+n)(1−α)

which implies,

(1 + n)kλo

η + (1 + n)kλo

= α ⇐⇒ 1− α =
η

η + (1 + n)kλo

(A.3)

and can be written as,

(1 + n)kλoNt+1Lt

[η + (1 + n)kλo ]Nt+1Lt

= α ⇐⇒ 1− α =
ηNt+1Lt

[η + (1 + n)kλo ]Nt+1Lt

, (A.4)

where α is the capital (machines) share, 1− α is the labor share, (1 + n)kλoNt+1Lt is the
investment in machines formation, ηNt+1Lt is the investment in patents (old and new),
and [η+(1+n)kλo ]Nt+1Lt is the aggregate investment. Therefore, Equation (A.3) suggest
that at the optimal patent breadth λo, the proportion of aggregate investment devoted to
machine formation equals share of machines and the proportion of aggregate investment
devoted to patents equals share of labor, each period.
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